A nonconvex, piecewise linear optimization problem
نویسندگان
چکیده
منابع مشابه
Nonconvex, lower semicontinuous piecewise linear optimization
A branch-and-cut algorithm for solving linear problems with continuous separable piecewise linear cost functions was developed in 2005 by Keha et. al. This algorithm is based on valid inequalities for an SOS2 based formulation of the problem. In this paper we study the extension of the algorithm to the case where the cost function is only lower semicontinuous. We extend the SOS2 based formulati...
متن کاملManifold Sampling for Nonconvex Optimization of Piecewise Linear Compositions
We develop a manifold sampling algorithm for the unconstrained minimization of 4 a nonsmooth composite function f , ψ + h ◦ F when ψ is smooth with known derivatives, h is a 5 nonsmooth, piecewise linear function, and F is smooth but expensive to evaluate. The trust-region 6 algorithm classifies points in the domain of h as belonging to different manifolds and uses this knowl7 edge when computi...
متن کاملNonconvex piecewise linear knapsack problems
This paper considers the minimization version of a class of nonconvex knapsack problems with piecewise linear cost structure. The items to be included in the knapsack have a divisible quantity and a cost function. An item can be included partially in the given quantity range and the cost is a nonconvex piecewise linear function of quantity. Given a demand, the optimization problem is to choose ...
متن کاملnetwork optimization with piecewise linear convex costs
the problem of finding the minimum cost multi-commodity flow in an undirected and completenetwork is studied when the link costs are piecewise linear and convex. the arc-path model and overflowmodel are presented to formulate the problem. the results suggest that the new overflow model outperformsthe classical arc-path model for this problem. the classical revised simplex, frank and wolf and a ...
متن کاملNonconvex piecewise linear functions: Advanced formulations and simple modeling tools
We present novel mixed-integer programming (MIP) formulations for (nonconvex) piecewise linear functions. Leveraging recent advances in the systematic construction of MIP formulations for disjunctive sets, we derive new formulations for univariate functions using a geometric approach, and for bivariate functions using a combinatorial approach. All formulations derived are small (logarithmic in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1991
ISSN: 0898-1221
DOI: 10.1016/0898-1221(91)90162-w